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Abstract

A total position operator X in the position representation is derived for lattice
fermionic systems with periodic boundary conditions. The operator is shown
to be Hermitian, the generator of translations in momentum space, and its
time derivative is shown to correspond to the total current operator in a periodic
system. The operator is such that its moments can be calculated up to any order.
To demonstrate its utility finite size scaling is applied to the Brinkman–Rice
transition as well as to metallic and insulating Gutzwiller wavefunctions.

PACS numbers: 03.65.Ca, 71.10.Fd, 71.23.An

The position operator and its moments give important information about localization in
quantum systems. As was shown by Kohn [1] metals and insulators are distinguished by
the extent of their localization. Many real systems are periodic, and in many model systems
periodic boundary conditions are imposed. In such cases the Hilbert space that forms the
domain of operators is restricted; hence the position operator is ill-defined [2]. The single
particle position operator in the crystal momentum representation was derived by Blount
[2] and discussed extensively in the context of band theory. In the crystal momentum
representation this operator can be generalized to the many-body case [3]. To calculate
the total position in the position representation Resta [4, 5] suggests averaging the quantity
ei 2πx

L . The expectation value of the total position operator is then defined as

〈x〉 = L

2π
Im ln〈�| ei 2πx

L |�〉. (1)

Via first-order perturbation theory, Resta also shows [4] that the time derivative of the
polarization operator based on the above definition gives the total current in the limit L → ∞.
This idea has been applied to lattice fermionic systems at half-filling [5], and extended to
systems at arbitrary fillings [6]. A related formalism due to Souza et al [7] based on the
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cumulant generating function (of which equation (1) is a special case) establishes relations
between localization and polarization.

It is important to note that the position operator in this method is calculated indirectly, by
first evaluating the expectation value of ei 2πx

L . Equation (1) is exact as can be shown [5] but
the calculation of higher moments is not straightforward; the spread functional suggested by
Resta and Sorella [5] (based on equation (1)) is valid in the thermodynamic limit.

Here it is shown that a total position operator for a lattice fermionic system with periodic
boundary conditions can be defined as the generator of total momentum shifts. It is also
demonstrated that the time derivative of the total position operator gives the current for a
system with any number of sites (finite L). The total position operator derived below is such
that expectation values of arbitrary powers are readily evaluated; hence, an accurate assessment
and finite size scaling of localization is enabled (up to any desired order). The utility of the
operator is then demonstrated via variational calculations on the Hubbard model [8–10] based
on the Gutzwiller wavefunction [10, 11].

The derivation of the total position operator is closely related to that of the total momentum
operator in [12]. The class of models for which the formalism presented below are those used
in strongly correlated systems consisting of site to site hopping terms and some interaction
terms. An example of a lattice model is the Hubbard Hamiltonian,

H = −t
∑
〈i,j〉σ

(
c
†
iσ cjσ + H.c.

)
+ U

∑
i

ni↑ni↓, (2)

consisting of L sites. In the following, the total position operator will be derived for the one-
dimensional Hubbard model. Generalizations to higher dimensions and other lattice models
will be discussed below.

The real-space (Wannier state) and reciprocal-space (Bloch state) creation operators are
related in the usual way,

c̃k = 1√
L

L∑
j=1

ei
2πkxj

L cj , (3)

where xj is the position of site j . In order to define a total position operator we first define a
momentum permutation operator as

Pkl = 1 − (
c̃
†
k − c̃

†
l

)
(c̃k − c̃l), (4)

where c̃
†
k creates a particle in the Bloch state k. A momentum space shift operator can be

defined as

Un = Pn−1n . . . .P12, (5)

with the property that

ULc̃k =
{
c̃k−1UL, k = 2, . . . , L

c̃LUL, k = 1.
(6)

For systems with spin- 1
2 particles we can define the compound momentum space shift

operator as

U = UL↑UL↓, (7)

with the property

Ucj,σ = ei
2πxj

L cj,σ U, (8)

where cj,σ is an annihilation operator for particles at site xj with spin σ .
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We define the total position operator X through three conditions. First we require it to be
the generator of total momentum shifts, i.e.

U = ei 2πX
L . (9)

We also require X to be Hermitian,

X = X†. (10)

and that the time derivative of X give the total current,

eẊ = ie[H,X] = J, (11)

which for the Hubbard model is defined as

J = −iet
∑
〈i,j〉σ

(
c
†
iσ cjσ − c

†
jσ ciσ

)
. (12)

In order to derive the explicit form of X we first define

g(α) =
L−1∑
x=0

i e−i 2πxα
L , (13)

which can be evaluated via the geometric sum formula to give

g(α) = i
1 − e−i2πα

1 − e−i 2πα
L

. (14)

We can take the derivative of g(α) at some integer value m for α,

g′(m) = 2π

L

L−1∑
x=0

x e−i 2πxm
L . (15)

Inverting the Fourier series, we can obtain an expression for the position x valid for
x = 0, . . . , L − 1,

x = 1

2π

L∑
k=1

g′(m) ei 2πxm
L . (16)

For m 
= L,

g′(m) = 2π/(e−i 2πm
L − 1), (17)

and g′(L) can be evaluated from equation (15) using the arithmetic sum formula giving
g′(L) = π(L − 1). Thus, an overall expression for x reads

x =
L−1∑
m=1

(
1

2
+

e−i 2πxm
L

e−i 2πm
L − 1

)
. (18)

The right-hand side of equation (18) is the sawtooth function f (x) = x mod L. We
propose to take the sawtooth function as the definition of our position operator. Based on
equation (9) we write the total position operator X for a many-particle system as a power series
in the momentum shift operator as

X =
L−1∑
m=1

(
1

2
+

Um

e−i 2πm
L − 1

)
. (19)

It is to be emphasized that X is a genuine many-body operator (as is that of Resta [4]).
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Having defined our total position operator, we can now test whether it satisfies
the requirements (equations (9)–(11)). Letting X operate on an arbitrary Wannier state(|x, σ 〉 = c

†
1,σ1

. . . c
†
N,σN

|0〉) for a system gives the result

X|x, σ 〉 =
L−1∑
m=1

(
1

2
+

ei 2πm(x1+···+xN )

L

e−i 2πm
L − 1

)
|x, σ 〉 = ((x1 + · · · + xL)mod L)|x, σ 〉 (20)

where we have used equations (8) and (18). Since

U|x, σ 〉 = ei 2π(x1+···+xN )

L |x, σ 〉, (21)

equation (9) follows. Hermiticity of X follows from the unitarity of U and from the fact that
UL = 1.

To demonstrate that the operator X satisfies the condition in equation (11), we first note
that U commutes with the interaction part of the Hamiltonian. This can be shown by using
equation (8). Thus our task consists of evaluating the commutator [T ,X], T denoting the
kinetic part of the Hubbard Hamiltonian. We first define an operator

Y =
L∑

m=1

Um

e−i 2πm
L − 1

. (22)

The last term in the sum is divergent. However, below we show that this divergence
disappears for the commutator [T , Y ].

We first evaluate the commutator

[T , Y ] =
L∑

m=1

[T ,Um]

e−i 2πm
L − 1

. (23)

We split the kinetic energy into two parts as

A = −t
∑
〈i,j〉σ

c
†
iσ cjσ

A† = −t
∑
〈i,j〉σ

c
†
jσ ciσ .

(24)

Thus we can rewrite equation (23) as

[T , Y ] =
L∑

m=1

[A,Um] + [A†,Um]

e−i 2πm
L − 1

. (25)

Each commutator in equation (25) can be evaluated by using equation (8). We obtain

[A,Um] = (
e−i 2πm

L − 1
)
UmA

[A†,Um] = (
1 − e−i 2πm

L

)
A†Um,

(26)

giving a new expression for the commutator:

[T , Y ] =
L∑

m=1

UmA − A†Um. (27)

We now substitute the condition in equation (9) and we obtain

[T , Y ] =
L∑

m=1

ei 2πXm
L A − A† ei 2πXm

L . (28)
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It is easily seen that this commutator is zero, since X operating on a Wannier state gives
an integer and

L∑
m=1

ei 2πXm
L = 0. (29)

On the other hand, using the same reasoning we used to arrive at equation (27) it can be
shown that

[T ,X] =
L−1∑
m=1

UmA − A†Um. (30)

Hence, from equation (27) we see that

[T ,X] = A† − A, (31)

since UL = 1. From equation (31) the expression for the current (equation (12)) is
straightforward.

The total position operator X derived above can be generalized to many dimensions as
follows. In higher dimensions the operator becomes a vector operator. The generalization of
the above derivation has to be based on a generalized total momentum shift operator consisting
of the product of all one-dimensional momentum shift operators in a particular direction. For
example, for a three-dimensional system with dimensions x, y, z a total momentum shift
operator for the x direction (spinless case) would consist of the product of all one-dimensional
momentum shift operators:

WL,x =
∏
y,z

U
(y,z)

L,x , (32)

where U
(y,z)

L,x denotes the total momentum shift operator in the x-direction for a given set of
coordinates y, z (equation (5)). Such an operator satisfies the commutation relation

WL,x c̃kx ,ky ,kz
=

{
c̃kx−1,ky ,kz

WL,x, kx = 2, . . . , L; ky, kz = 1, . . . , L

c̃L,ky ,kz
WL,x, kx = 1; ky, kz = 1, . . . , L.

(33)

Subsequent construction of a total position operator for a three-dimensional system follows
the same steps as the one-dimensional case. The total momentum shift operator for a spin- 1

2
system can be written as

Wi = WL,i,↑WL,i,↓, (34)

where Wi is a vector operator, and i = x, y, z. A particular component of the total position
operator can then be written as

Ri =
L−1∑
m=1

(
1

2
+

Wm
i

e−i 2πm
L − 1

)
. (35)

The commutator of the operator Ri will give the current in the i direction. This is a
consequence of the fact that the operator Wi commutes with the hoppings in directions other
than i included in the Hubbard Hamiltonian.

Extensions of the Hubbard model can also be handled. More complex interaction types
(nearest neighbour, etc) follow the same derivation as above, as the expression for the current
does not change in this case. For more complex hoppings the expression for the current is
modified to include the new hoppings, but the derivation presented above is still valid.
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For impurity models [13, 14] the strategy of derivation of a total position operator is
modified slightly. For example, the one-dimensional periodic Anderson model, in which each
site contains a set of localized f -orbitals, can be written as

H = −t
∑
〈i,j〉σ

(
c
†
iσ cjσ + H.c.

)
+ Ef

∑
i,l,σ

nf (i, l, σ )

+
1

2

∑
i

∑
l,σ 
=l′,σ ′

U(l, l′)nf (i, l, σ )nf (i, l′, σ ′) + H ′, (36)

with

H ′ =
∑
i,l,σ

{
Vlf

†
i,l,σ ci,σ + H.c.

}
. (37)

In equations (36) and (37) nf (i, l, σ )
(
f

†
i,l,σ

)
denotes the density (creation operator) of the

f -orbital with label l at site i and with spin σ . Each lattice site contains a set of f orbitals,
but there are no inter-site hoppings between the localized f -orbitals on different sites. As a
consequence, the current operator is the same as that of the Hubbard model, in spite of the fact
that the charge density includes the f -orbital terms [15]. One could construct a total position
operator which does not include impurity orbitals, and has the same form as X derived above
(only electrons in the conduction band enter the definition). As conduction takes place only
on the standard lattice sites, not the ones associated with the f -orbitals, such an approach
may in some cases be sufficient to characterize localization phenomena associated with metal–
insulator transitions. However, it is also possible to construct a total position operator valid
for a system with the periodic Anderson Hamiltonian.

To do this one has to consider the f -orbitals as separate lattices, and construct a total
momentum shift operator for each set of f -orbitals localized on different lattice sites. One
can construct an operator

V
(l)
L = Q

(l)
L−1L . . . .Q

(l)
12 , (38)

where

Q
(l)
jk = 1 − (

f̃
†
j,l − f̃

†
k,l

)
(f̃j,l − f̃k,l). (39)

f̃j,l denotes the Fourier transform of the annihilation operators of a particular f -orbital,

f̃k,l = 1√
L

L∑
j=1

ei
2πkxj

L fj,l . (40)

The operator in equation (38) satisfies the property

V
(l)
L f̃k =

{
f̃k−1,lV

(l)
L , k = 2, . . . , L

f̃L,lV
(l)
L , k = 1.

(41)

Thus a total momentum shift operator can be constructed as

Z = U
∏

l

V(l), (42)

where

V(l) = V
(l)
L,↑V

(l)
L,↓. (43)

The total momentum shift operator Z can be used to construct a total position operator

XPAM =
L−1∑
m=1

(
1

2
+

Zm

e−i 2πm
L − 1

)
. (44)
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L=180

Figure 1. χ4 (defined in equation (46)) for the Hubbard model using the Gutzwiller wavefunction
evaluated in the Gutzwiller approximation scheme. The Brinkman–Rice transition is known to
occur at Uc ≈ 10.

The operator XPAM includes the positions of electrons in impurity orbitals as well as
those in the conduction band. Demonstrating that XPAM satisfies the three required conditions
proceeds as before. Proving that the time derivative of the position operator is equal to the
current is simplified by the fact that the operators Vm commute with the periodic Anderson
Hamiltonian. This is another consequence of the fact that there are no hoppings between f -
orbitals positioned on different sites. Hence all that needs to be proven is that the commutator
corresponding to U gives the current operator corresponding to that of the Hubbard model
[15]. This was already shown above.

The operator X is well defined in the occupation number representation and it and its
moments can thus be calculated in practical situations. Here we demonstrate the utility of the
operator X by calculating the moments and performing finite size scaling for the Gutzwiller
approximate solution of the Hubbard model at half-filling. The Gutzwiller wavefunction
(GWF) has the form

|�〉 = exp

(
−γ

∑
i

ni↑ni↓

)
|�0〉, (45)

where |�0〉 is a non-interacting wavefunction, and γ is a variational parameter which projects
out double occupations. Most often |�0〉 is the Fermi sea. In this case the exact solution
in one [16, 17] and infinite dimensions [18, 19] is available. At half-filling the former is
metallic for finite U, in contradiction with the exact solution [20]. An approximate solution
to the GWF due to Gutzwiller (GA) results in the Brinkman–Rice metal–insulator transition
[11, 21, 22]. In finite dimensions the GA is only approximate; however in infinite dimensions
it corresponds to the exact solution [18, 19]. In a one-dimensional system the Brinkman–
Rice transition is known to occur at Uc ≈ 10. If |�0〉 is a non-interacting antiferromagnetic
wavefunction the Gutzwiller wavefunction can be made insulating [23]. In the following, to
assess the localization accompanying the metal–insulator transition we calculate the quantity

χ4 =
√

〈X4〉 − 〈X2〉〈X2〉
L2

, (46)

via quantum Monte Carlo methods [24, 25].
In figure 1, χ4 as a function of the Hubbard interaction strength for three different system

sizes is presented. A transition at Uc ≈ 10 is clearly visible from the simultaneous drop
of all three curves. For large U (U � 11) the largest (smallest) system shows the smallest
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Figure 2. Size dependence of χ4 for a metallic Gutzwiller wavefunction. The inset shows the size
dependence of the fourth-order Binder cumulant.
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Figure 3. Size dependence of χ4 for an insulating Gutzwiller wavefunction. The inset shows the
size dependence of the fourth-order Binder cumulant.

(largest) value of the fourth moment, which is the tendency one expects for the insulating state.
(The same behaviour was found for the square root of the second-order deviation.) These
results coincide with what is known about the Brinkman–Rice transition being a localization
transition [22].

In figures 2 and 3 a metallic and an insulating wavefunction are compared. For the former
the non-interacting wavefunctions (ground state of the U = 0 system) was used in place of
|�0〉 in equation (45). For the insulating wavefunction an antiferromagnetic solution was used
with a magnetization of m = 0.333 33. The size dependence of the quantity χ4 is clearly
sensitive to whether the system is metallic or insulating: as the variational parameter γ is
increased χ4 decreases in both cases, but the size dependence of χ4 is opposite between the
two cases. The metallic state (figure 2) shows an increase in delocalization with system size,
whereas in the insulating state (figure 3) the larger system is more localized. The insets in
figures 2 and 3 show the value of the fourth-order Binder cumulant [26–28] defined as

U4 = 1 − 〈X4〉
3〈X2〉〈X2〉 , (47)

a quantity used in the finite size scaling [29] of phase transitions. U4 approaches a value of
two-thirds in the case of perfect localization. Again, total order (localization) is approached
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by both the metallic and insulating wavefunctions, but the size dependence is the opposite
between the two cases, with the larger system closer to the limiting value of two-thirds for the
insulating wavefunction (hence more localized).

In this paper a total position operator was derived for lattice models. The operator satisfies
three crucial criteria: it is the generator of total momentum shifts, it is Hermitian and its time
derivative corresponds to the total current operator. The form of the operator is such that the
average total position and its moments can be readily calculated. Hence Binder cumulants used
in finite size scaling can also be evaluated. The sensitivity of such moments and cumulants
was also demonstrated by investigating their size dependence in the Brinkman–Rice transition,
and metallic and insulating Gutzwiller wavefunctions.
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